

Welcome to Django Async Redis’s documentation!

Contents:

	Django Async Redis
	Introduction

	Requirements

	User guide

	Advanced usage

	Notes

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-09-25)

Indices and tables

	Index

	Module Index

	Search Page

Django Async Redis

[image: _images/django-async-redis.svg]
 [https://pypi.python.org/pypi/django-async-redis][image: _images/django-async-redis1.svg]
 [https://travis-ci.com/Andrew-Chen-Wang/django-async-redis?branch=master][image: Documentation Status]
 [https://django-async-redis.readthedocs.io/en/latest/?badge=latest]
Introduction

django-async-redis is a full featured Redis cache and session backend for Django.

	Free software: Apache Software License 2.0

	Documentation: https://django-async-redis.readthedocs.io.

Requirements

	Python [https://www.python.org/downloads/] 3.6+

	Django [https://www.djangoproject.com/download/] 3.0+

	aioredis [https://pypi.org/project/aioredis/] 1.0+

	Redis server [https://redis.io/download] 2.8+

User guide

Installation

Install with pip:

$ python -m pip install django-async-redis

Configure as cache backend

To start using django-async-redis, you should change your Django cache settings to
something like:

CACHES = {
 "default": {
 "BACKEND": "django_async_redis.cache.RedisCache",
 "LOCATION": "redis://127.0.0.1:6379/1",
 "OPTIONS": {
 "CLIENT_CLASS": "django_async_redis.client.DefaultClient",
 }
 }
}

django-async-redis uses the aioredis native URL notation for connection strings, it
allows better interoperability and has a connection string in more “standard”
way. Some examples:

	redis://[:password]@localhost:6379/0

	rediss://[:password]@localhost:6379/0

	unix://[:password]@/path/to/socket.sock?db=0

Three URL schemes are supported:

	redis://: creates a normal TCP socket connection

	rediss://: creates a SSL wrapped TCP socket connection

	unix:// creates a Unix Domain Socket connection

There are several ways to specify a database number:

	A db querystring option, e.g. redis://localhost?db=0

	If using the redis:// scheme, the path argument of the URL, e.g.
redis://localhost/0

Advanced usage

Pickle version

For almost all values, django-async-redis uses pickle to serialize objects.

The latest available version of pickle is used by default. If you want set a
concrete version, you can do it, using PICKLE_VERSION option:

CACHES = {
 "default": {
 # ...
 "OPTIONS": {
 "PICKLE_VERSION": -1 # Use the latest protocol version
 }
 }
}

Memcached exceptions behavior

In some situations, when Redis is only used for cache, you do not want
exceptions when Redis is down. This is default behavior in the memcached
backend and it can be emulated in django-async-redis.

For setup memcached like behaviour (ignore connection exceptions), you should
set IGNORE_EXCEPTIONS settings on your cache configuration:

CACHES = {
 "default": {
 # ...
 "OPTIONS": {
 "IGNORE_EXCEPTIONS": True,
 }
 }
}

Also, you can apply the same settings to all configured caches, you can set the global flag in
your settings:

DJANGO_ASYNC_REDIS_IGNORE_EXCEPTIONS = True

Log Ignored Exceptions

When ignoring exceptions with IGNORE_EXCEPTIONS or
DJANGO_ASYNC_REDIS_IGNORE_EXCEPTIONS, you may optionally log exceptions using the
global variable DJANGO_ASYNC_REDIS_LOG_IGNORED_EXCEPTIONS in your settings file:

DJANGO_ASYNC_REDIS_LOG_IGNORED_EXCEPTIONS = True

If you wish to specify the logger in which the exceptions are output, simply
set the global variable DJANGO_ASYNC_REDIS_LOGGER to the string name and/or path
of the desired logger. This will default to __name__ if no logger is
specified and DJANGO_ASYNC_REDIS_LOG_IGNORED_EXCEPTIONS is True:

DJANGO_ASYNC_REDIS_LOGGER = 'some.specified.logger'

Infinite timeout

django-async-redis comes with infinite timeouts support out of the box.
And it behaves in the same way as the Django BaseCache backend specifies:

	timeout=0 expires the value immediately.

	timeout=None infinite timeout

await cache.set_async("key", "value", timeout=None)

Get ttl (time-to-live) from key

With Redis, you can access to ttl of any stored key, for it,
django-async-redis exposes ttl_async function.

It returns:

	0 if key does not exists (or already expired).

	None for keys that exists but does not have any expiration.

	ttl value for any volatile key (any key that has expiration).

>>> from django.core.cache import cache
>>> await cache.set_async("foo", "value", timeout=25)
>>> await cache.ttl_async("foo")
25
>>> await cache.ttl_async("not-existent")
0

Expire & Persist

Additionally to the simple ttl query, you can send persist a concrete key or
specify a new expiration timeout using the persist_async and expire_async
methods:

>>> await cache.set_async("foo", "bar", timeout=22)
>>> await cache.ttl_async("foo")
22
>>> await cache.persist_async("foo")
>>> await cache.ttl_async("foo")
None

>>> await cache.set_async("foo", "bar", timeout=22)
>>> await cache.expire_async("foo", timeout=5)
>>> await cache.ttl_async("foo")
5

Scan & Delete keys in bulk

django-async-redis comes with some additional methods that help with searching or
deleting keys using glob patterns.

>>> from django.core.cache import cache
>>> await cache.keys_async("foo_*")
["foo_1", "foo_2"]

A simple search like this will return all matched values. In databases with a
large number of keys this isn’t suitable method. Instead, you can use the
iter_keys_async function that works like the keys_async function but uses Redis
server side cursors. Calling iter_keys_async will return a generator that you can
then iterate over efficiently.

>>> from django.core.cache import cache
>>> await cache.iter_keys_async("foo_*")
<async_generator object algo at 0x7ffa9c2713a8>
>>> (await cache.iter_keys_async("foo_*")).__anext__()
"foo_1"

For deleting keys, you should use delete_pattern_async which has the same glob
pattern syntax as the keys_async function and returns the number of deleted keys.

>>> from django.core.cache import cache
>>> await cache.delete_pattern_async("foo_*")

Redis native commands

django-async-redis has limited support for some Redis atomic operations, such as the
commands SETNX and INCR.

You can use the SETNX command through the backend set_async() method with
the nx parameter:

>>> from django.core.cache import cache
>>> await cache.set_async("key", "value1", nx=True)
True
>>> await cache.set_async("key", "value2", nx=True)
False
>>> await cache.get_async("key")
"value1"

Also, the incr_async and decr_async methods use Redis atomic
operations when the value that a key contains is suitable for it.

Note that setting xx to True overrides the nx flag according
to aioredis.

Connection pools

Behind the scenes, django-async-redis uses the underlying aioredis connection pool
implementation and exposes a simple way to configure it. Alternatively, you
can directly customize a connection/connection pool creation for a backend.

The default aioredis behavior is to not close connections, recycling them when
possible.

Notes

Since the majority of this code was ported from django-redis, there was one
case that had needed a monkeypatch. In django_async_redis.util, we implement
CacheKey which subclasses str which helps us know if a cache key was
already created. Since aioredis, checks if the cache key is of type str
(and others), I had to monkeypatch that check so that a CacheKey instance could
also be accepted.

Credit

	Hey, I’m Andrew. I’m busy in college, but I wanted to help contribute
to Django’s async ecosystem.

	Lots of code and docs is taken from django-redis, including the tests.
I just needed to port everything to asyncio and aioredis.

	I used cookiecutter-pypackage to generate this project.

	Thank you to Python Discord server’s async topical chat
for helping me understand when to use coroutines over sync functions
and @Bast and @hmmmm in general because they’re OG.

Installation

Stable release

To install Django Async Redis, run this command in your terminal:

$ pip install django-async-redis

This is the preferred method to install Django Async Redis, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Django Async Redis can be downloaded from the Github repo [https://github.com/Andrew-Chen-Wang/django-async-redis].

You can either clone the public repository:

$ git clone git://github.com/Andrew-Chen-Wang/django-async-redis

Or download the tarball [https://github.com/Andrew-Chen-Wang/django-async-redis/tarball/master]:

$ curl -OJL https://github.com/Andrew-Chen-Wang/django-async-redis/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Django Async Redis in a project:

import django_async_redis

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Andrew-Chen-Wang/django_async_redis/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Django Async Redis could always use more documentation, whether as part of the
official Django Async Redis docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Andrew-Chen-Wang/django_async_redis/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django_async_redis for local development.

	Fork the django_async_redis repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django_async_redis.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django_async_redis
$ cd django_async_redis/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ black django_async_redis tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/Andrew-Chen-Wang/django_async_redis/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_django_async_redis

Credits

Development Lead

	Andrew Chen Wang <acwangpython@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-09-25)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Async Redis’s documentation!

 		
 Django Async Redis

 		
 Introduction

 		
 Requirements

 		
 User guide

 		
 Installation

 		
 Configure as cache backend

 		
 Advanced usage

 		
 Pickle version

 		
 Memcached exceptions behavior

 		
 Log Ignored Exceptions

 		
 Infinite timeout

 		
 Get ttl (time-to-live) from key

 		
 Expire & Persist

 		
 Scan & Delete keys in bulk

 		
 Redis native commands

 		
 Connection pools

 		
 Notes

 		
 Credit

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-09-25)

_static/up-pressed.png

_static/up.png

_static/plus.png

